42,899 research outputs found

    Model calculations of possible ionospheric backscatter echo area for a mid-latitude HF radar

    Get PDF
    HF ray path calculation is performed in order to identify possible ionospheric backscatter echo area for an HF radar at mid-latitude. The calculation is made on the basis of the R.M. Jones and J.J. Stephenson (U.S. Dept. of Commerce, OT Rep. 75-76, 1975) HF ray path tracing algorithm plus the IRI-2001 ionosphere model. It is shown that depending on the local time and geomagnetic activity, the possible ionospheric backscatter regions have different distributions. In any case the backscatter region is large enough, indicating the capability of a planned HF radar in Hokkaido (43.5°N, 143.6°E), Japan

    Fiscal Update, March 28, 2005

    Get PDF
    The Fiscal Division newsletter, published weekly during session and periodically during the interim

    On Recommendation of Learning Objects using Felder-Silverman Learning Style Model

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The e-learning recommender system in learning institutions is increasingly becoming the preferred mode of delivery, as it enables learning anytime, anywhere. However, delivering personalised course learning objects based on learner preferences is still a challenge. Current mainstream recommendation algorithms, such as the Collaborative Filtering (CF) and Content-Based Filtering (CBF), deal with only two types of entities, namely users and items with their ratings. However, these methods do not pay attention to student preferences, such as learning styles, which are especially important for the accuracy of course learning objects prediction or recommendation. Moreover, several recommendation techniques experience cold-start and rating sparsity problems. To address the challenge of improving the quality of recommender systems, in this paper a novel recommender algorithm for machine learning is proposed, which combines students actual rating with their learning styles to recommend Top-N course learning objects (LOs). Various recommendation techniques are considered in an experimental study investigating the best technique to use in predicting student ratings for e-learning recommender systems. We use the Felder-Silverman Learning Styles Model (FSLSM) to represent both the student learning styles and the learning object profiles. The predicted rating has been compared with the actual student rating. This approach has been experimented on 80 students for an online course created in the MOODLE Learning Management System, while the evaluation of the experiments has been performed with the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The results of the experiment verify that the proposed approach provides a higher prediction rating and significantly increases the accuracy of the recommendation

    Fiscal Update, March 16, 2006

    Get PDF
    The Fiscal Division newsletter, published weekly during session and periodically during the interim

    Odd-even mass differences from self-consistent mean-field theory

    Full text link
    We survey odd-even nuclear binding energy staggering using density functional theory with several treatments of the pairing interaction including the BCS, Hartree-Fock-Bogoliubov, and the Hartree-Fock-Bogoliubov with the Lipkin-Nogami approximation. We calculate the second difference of binding energies and compare with 443 measured neutron energy differences in isotope chains and 418 measured proton energy differences in isotone chains. The particle-hole part of the energy functional is taken as the SLy4 Skyrme parametrization and the pairing part of the functional is based on a contact interaction with possible density dependence. An important feature of the data, reproduced by the theory, is the sharp gap quenching at magic numbers. With the strength of the interaction as a free parameter, the theory can reproduce the data to an rms accuracy of about 0.25 MeV. This is slightly better than a single-parameter phenomenological description but slightly poorer than the usual two-parameter phenomenological form C/A^alpha . The following conclusions can be made about the performance of common parametrization of the pairing interaction: (i) there is a weak preference for a surface-peaked neutron-neutron pairing, which might be attributable to many-body effects; (ii) a larger strength is required in the proton pairing channel than in the neutron pairing channel; (iii) pairing strengths adjusted to the well-known spherical isotope chains are too weak to give a good overall fit to the mass differences.Comment: 13 pages, 9 figure

    Nuclear constraints on non-Newtonian gravity at femtometer scale

    Full text link
    Effects of the non-Newtonian gravity on properties of finite nuclei are studied by consistently incorporating both the direct and exchange contribution of the Yukawa potential in the Hartree-Fock approach using a well-tested Skyrme force for the strong interaction. It is shown for the first time that the strength of the Yukawa term in the non-Newtonian gravity is limited to log(α)<1.75/[λ(fm)]0.54+33.6\log(|\alpha|)<1.75/[\lambda(\rm fm)]^{0.54} + 33.6 within the length scale of λ=110\lambda=1-10 fm in order for the calculated properties of finite nuclei not to be in conflict with accurate experimental data available.Comment: Additional discussions and references added; related Lab Talk is available via http://iopscience.iop.org/0954-3899/labtalk-article/5229
    corecore